Algebra 2 Test 2022

Practice Test Name: John Sidanycz

#1 Points possible: 2. Total attempts: 1

Find the following radicals.

$$b - \sqrt{-81}$$

$$\epsilon - \sqrt{81}$$

b. Not a real number

b
$$-\sqrt{-81}$$
 c. -9

$$c. - 9$$

$$\sim \sqrt{81}$$

#2 Points possible: 1. Total attempts: 1

Find the following root. If the root does not exist as a real number, write "DNE".

$$-\sqrt[3]{27} = -3$$

#3 Points possible: 1. Total attempts: 1

Find the following root.

$$-\sqrt[4]{16} =$$

#4 Points possible: 2. Total attempts: 1

Assume all variables are positive, and find the following root:

$$\sqrt[3]{a^3b^6} = ab^2$$

#5 Points possible: 3. Total attempts: 1

Assume all variables are positive, and find the following root:

$$\sqrt[3]{-64a^{12}b^6} = -4a^3b^2$$

#6 Points possible: 1. Total attempts: 1

Convert the following radical to an expression with rational exponents and simplify if possible. Assume all variables are positive numbers.

$$\sqrt[8]{y^5} = \sqrt[9]{5/8}$$

#7 Points possible: 1. Total attempts: 1

Use the definition of rational exponents to write each of the following with the appropriate root. Then simplify:

$$4^{\frac{1}{2}} = \sqrt{4} = 2$$

#8 Points possible: 1. Total attempts: 1

Use the definition of rational exponents to write each of the following with the appropriate root. Then simplify:

$$(-125)^{\frac{1}{3}} = \frac{\sqrt[3]{-125}}{\sqrt[3]{-125}} = -5$$

#9 Points possible: 1. Total attempts: 1

Use the definition of rational exponents to write each of the following with the appropriate root. Then simplify:

$$\left(\frac{25}{4}\right)^{\frac{1}{2}} = \frac{\sqrt{\frac{15}{4}} = \frac{5}{2}}{\sqrt{\frac{1}{4}}}$$

#10 Points possible: 1. Total attempts: 1

Use the definition of rational exponents to write each of the following with the appropriate root. Then simplify:

$$\left(\frac{625}{16}\right)^{\frac{1}{4}} = \sqrt[4]{\frac{635}{16}} = \frac{5}{3}$$

#11 Points possible: 2. Total attempts: 1

Use the definition of rational exponents to write each of the following with the appropriate root. Then simplify:

$$64^{\frac{4}{3}} = \frac{(\sqrt[3]{64})^4 - 4^4}{(\sqrt[3]{64})^4 - 4^4} = 256$$

#12 Points possible: 2. Total attempts: 1

Simplify the expression. Remember, negative exponents give reciprocals.

$$625^{-\frac{3}{4}} = \frac{1}{125}$$

$$(625)^{3/4} = (4\sqrt{625})^3 = (5)^3 = 125$$

#13 Points possible: 2. Total attempts: 1

Simplify the expression. Remember, negative exponents give reciprocals.

$$\left(\frac{64}{49}\right)^{-\frac{1}{2}} = \frac{7}{64}$$

$$\left(\frac{49}{64}\right)^{\frac{1}{2}} = \sqrt{\frac{49}{64}}$$

#14 Points possible: 2. Total attempts: 1

Simplify the expression. Remember, negative exponents give reciprocals.

$$\left(\frac{8}{27}\right)^{-\frac{2}{3}} = \frac{9/4}{27} = \left(\frac{3}{2}\right)^{\frac{2}{3}} = \left(\frac{3}{2}\right)^{\frac{2}{3}} = \left(\frac{3}{2}\right)^{\frac{2}{3}} = \frac{9}{4}$$

#15 Points possible: 2. Total attempts: 1

Use the properties of exponents to simplify the following as much as possible. Assume all bases are positive.

$$x^{\frac{5}{6}} \cdot x^{\frac{1}{6}} = X^{\prime\prime} = X^{\prime\prime}$$

#16 Points possible: 2. Total attempts: 1

Use the properties of exponents to simplify the following as much as possible. Assume all bases are positive.

$$\frac{x^{\frac{1}{6}}}{x^{\frac{5}{6}}} = \frac{x^{416} - x^{2/3}}{x^{\frac{5}{6}}} = \frac{1}{2} x^{2/3}$$

#17 Points possible: 3. Total attempts: 1

Use the properties of exponents to simplify the following as much as possible. Assume all bases are positive.

$$\left(x^{\frac{2}{5}}y^{\frac{2}{5}}z^{\frac{2}{3}}\right)^{\frac{5}{6}} = \frac{x^{\frac{10}{50}}y^{\frac{10}{50}}y^{\frac{10}{50}}}{X} = \frac{x^{\frac{10}{50}}y^{\frac{10}{50}}y^{\frac{10}{50}}}{X} = \frac{x^{\frac{10}{50}}y^{\frac{10}{50}}}{X} = \frac{x^{\frac{1$$

#18 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use $\operatorname{sqrt}(x)$ for \sqrt{x} and $\operatorname{root}(x)(y)$ for $\sqrt[x]{y}$.

$$\sqrt{18} = \sqrt{9}\sqrt{2} = 3\sqrt{2}$$

#19 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers.

$$\sqrt{720} = \sqrt{144} \sqrt{5} = 12\sqrt{5}$$

#20 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers.

$$\sqrt[3]{320} = \sqrt[3]{64} \sqrt[3]{5} = 4(\sqrt[3]{5})$$

#21 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use squt(x) for \(\sqrt{x} \) and root(x)(y) for \(\sqrt{y} \).

#22 Points possible: 3. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use sqrt(x) for \sqrt{x} and sort(x) for \sqrt{y} .

$$\sqrt{20x^3} = \sqrt{4\sqrt{5}\sqrt{x^2}\sqrt{x}} = 2x\sqrt{5}x$$

#23 Points possible: 3. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use sort(x) for \sqrt{x} and root(x)(y) for \sqrt{y} .

$$\sqrt[3]{250a^8b^{12}} = \frac{\sqrt[3]{125}\sqrt[3]{2}\sqrt[3]{3}\sqrt[3]{a^4}\sqrt[3]{a^7}\sqrt[3]{b^{12}} = \left(5a^2b^4\right)\sqrt[3]{2a^2}$$

#24 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use sqrt(x) for \sqrt{x} and root(x)(y) for \sqrt{y} .

$$\sqrt{96a^2b^2c^3} = \frac{\sqrt{16}\sqrt{6}\sqrt{6}\sqrt{a^2\sqrt{b^2}}\sqrt{c^2\sqrt{c}}}{4abc\sqrt{6c}}$$

#25 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use sqrt(x) for \sqrt{x} and root(x)(y) for \sqrt{x} .

$$\sqrt[3]{1080a^2b^3c^5} = \sqrt[3]{216} \sqrt[3]{5} \sqrt[3]{a^2} \sqrt[3]{6^3} \sqrt[3]{c^2} \sqrt[3]{c^2} \sqrt[3]{c^2}$$

#26 Points possible: 3. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible.

Assume all variables represent positive numbers. Use sort(x) for and toot(x)(y) for y/y.

$$\sqrt[3]{135a^4b^2} = \sqrt[3]{27} \sqrt[3]{5} \sqrt[3]{6} \sqrt[3]{6} \sqrt[3]{5ab^2} = \sqrt[3]{3} \sqrt[3]{5ab^2}$$

#27 Points possible: 2. Total attempts: 1

Simplify the expression. Do not assume the variables represent positive numbers.

$$\sqrt{64y^2} = 9$$

#28 Points possible: 3. Total attempts: 1

Simplify the expression. Do not assume the variables represent positive numbers.

$$\sqrt{125x^3y^2} = \sqrt{25}\sqrt{5}\sqrt{x}\sqrt{x}\sqrt{y^2} = 5xy\sqrt{5x}$$

#29 Points possible: 3. Total attempts: 1

Assume all variables are positive, and find the following root:

$$\sqrt[5]{32a^{15}b^{15}} = 2a^{3}b^{3}$$

#30 Points possible: 2. Total attempts: 1

Use the properties of exponents to simplify the following as much as possible. Assume all bases are positive.

$$\frac{x^{\frac{3}{6}}y^{\frac{5}{6}}}{x^{\frac{5}{6}}y^{\frac{4}{5}}} = \frac{3/5 - 5/6}{X} + \frac{5/6 - 4/5}{X} = \frac{-7/30}{X} + \frac{130}{Y} + \frac{130}{Y}$$

3 5 - 16 - 25 - 2 5 - 4 = 25 24 = 1 5 = 30 30 30

#31 Points possible: 2. Total attempts: 1

Use the product property for radicals to simplify the following radical expressions as much as possible. Assume all variables represent positive numbers. Use sqrt(x) for \sqrt{x} and root(x)(y) for \sqrt{y} .

$$\sqrt{48x^3} = \sqrt{16} \sqrt{3} \sqrt{x^2} \sqrt{x} \left(4x \sqrt{3}x \right)$$

	•	•
		*
		٠
,		